MOLECULAR MECHANICS CALCULATIONS (MM3) ON ALKYL IODIDES

XUEFENG ZHOU AND NORMAN L. ALLINGER*

Department of Chemistry, Computational Center for Molecular Structure and Design, University of Georgia, Athens, Georgia 30602, USA

The MM3 force field has been extended to cover alkyl iodides. Structures, vibrational spectra and heats of formation have been well fitted to available experimental data. The experimental and *ab initio* conformational relationships are also satisfactorily reproduced

INTRODUCTION

There have been various force fields proposed for the treatment of organic halides.¹⁻³ Most of the early force fields were not based on adequate hydrocarbon force fields and were used only in connection with a small number of molecules or molecular types. Systematic studies of mono- and polyhalides within the framework of the MM2 force field^{2,3} were reported more than 10 years ago. The derived MM2 force field reproduced the known structural and energetic relationships fairly well for fluoro-, chloro- and bromo-substituted alkanes. Over the past decade, new experimental results emerged and reliable *ab initio* results on structures and energies

Table 1. Parameter set for alkyl iodides^{a,b}

Stretching	g paramete	rs:
Bond	Ks	lo
1-14	2.15	2.166
Bending p	parameters	:
Angle	Kb	θο
1-1-14	0.65	106.0 (type 1)
1-1-14	0.65	107 · 2 (type 2)
1-1-14	0.65	107.0 (type 3)
5-1-14	0.62	102.8 [types 1 and 2 (-CR ₂ - and -CRH-)]
5-1-14	0.62	$107 \cdot 8 \text{ [type 3 (-CH_2-)]}$
2 - 1 - 14	0.695	109.3

* Author for correspondence.

CCC 0894-3230/94/080420-11

© 1994 by John Wiley & Sons, Ltd.

Torsional parameters:

Dihedral angle	V ₁	V_2	V_3
1-1-1-14	-1.309	0.440	0.597
5-1-1-14	0.000	0.000	0.333
14-1-2-2	-0.700	-1.400	-1.400
14-1-2-5	0.000	0.160	0.090

Electronegativity parameters:

Bonds	Δl_0
$5-1-1-14 \\ 1-14-1-5 \\ 1-14-1-2$	-0.005 -0.009 0.009

Bohlmann effect parameter:

Bond	Parameter
1-14	+ 0.001

^a All distances are in angstroms, angles are in degrees, frequencies are in cm^{-1} (wavenumbers) and energies are in kcalmol⁻¹ (1 kcal = 4·184 kJ), unless stated otherwise. Abbreviations used in all tables: str., stretch; def., deformation; sym, symmetric; asym, antisymmetric.

^b Atom types: 1, saturated carbon; 2, alkene carbon; 5, hydrogen; 14, iodine.

of the smaller alkyl halides became available. These developments now permit a new parameterization of the halides force field so that not only the structural and energetic relationships, but also the vibrational spectra can be satisfactorily fitted at the same time.

The MM3 force field has been described for alkanes⁴

Received 31 August 1993 Revised 14 February 1994

and other compounds,⁵ and is more accurate and useful than MM2 and other early force fields. This work is concerned with extending the MM3 force field to cover alkyl iodides. It should be pointed out that in some ways it is more difficult to parameterize the force field for iodides than for the other classes of organic halides. This is because there are fewer experimental data available on iodides and, unlike the other halides, owing to the large number of electrons in iodine, there have been reported only a few ab initio calculations on these compounds. Thus one has very limited information available. We have derived an MM3 parameter set for alkyl iodides in this work, and it seems that this set of parameters reproduced the available structural and vibrational data successfully to within the usual limitations of the MM3 force field. The parameters derived are presented in Table 1. Using these parameters, the calculated vibrational frequencies (Tables 2-8), molecular structures (Table 9), conformational energies (Tables 10 and 11), and heats of formation (Table 12) are compared with available experimental data.

RESULTS AND DISCUSSION

Vibrational spectra

The vibrational spectra of a few alkyl iodides have been studied experimentally. Complete assignments of all the normal modes are available in the literature for methyl iodide, ⁶ ethyl iodide, ⁷ isopropyl iodide, ^{8,9} gauche-1-propyl iodide, ^{10,11} trans-1-propyl iodide, ^{10,11} tert-butyl iodide ¹² and 3-iodopropene. ¹³ As there have been

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
E	1	3027	3049	- 22	C-H str.
	2	1404	1425	- 21	HCH bend
	3	910	891	19	HCI bend
A_1	4	2918	2941	- 23	C-H str.
	5	1269	1241	28	HCH bend
	6	525	523	2	C-l str.

Table 2. Vibrational spectra of methyl iodide^{a,b}

^a See footnote a, Table 1.

^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 22 cm^{-1} and the average deviation is -5 cm^{-1} .

° Ref. 6.

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
A'	1	2988	2974	14	CH ₃ asym str.
	2	2939	2974	- 35	CH ₂ sym str.
	3	28 9 4	2919	-25	CH ₃ sym str.
	4	1454	1450	4	CH ₃ asym def. and CH ₂ bend
	5	1434	1435	-1	CH ₂ bend and CH ₃ asym def.
	6	1370	1377	- 7	CH_3 sym def. and $C-C$ str.
	7	1253	1203	50	CH ₂ wag.
	8	1004	1049	- 45	CH ₃ rock and CC str.
	9	968	950	18	CC str. and CH ₃ rock
	10	513	498	15	C-I str. and CCI bend
	11	248	262	-14	CCI bend and C-I str.
A"	12	3000	3014	-14	CH ₂ asym str.
	13	2988	2974	14	CH ₃ asym str.
	14	1467	1450	17	CH ₃ asym def.
	15	1150	1203	- 53	CH ₂ twist and CH ₃ rock
	16	1004	998	6	CH ₂ twist and CH ₃ rock
	17	742	743	-1	CH ₂ rock and CH ₃ rock
	18	237	223	14	CH ₃ torsion

Table 3. Vibrational spectra of ethyl iodide^{a,b}

^a See footnote a, Table 1.

^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 25 cm^{-1} and the average deviation is -3 cm^{-1} .

° Ref. 7.

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
 A'	1	2991	2978	13	Sym CH ₃ str.
	2	2989	2961	28	Sym CH ₃ str.
	3	2981	2925	56	CH str.
	4	2896	2882	14	Sym CH ₃ str.
	5	1475	1468	7	Asym CH ₃ bend
	6	1460	1458	2	Asym CH ₃ bend
	7	1416	1389	27	Sym CH ₃ bend
	8	1261	1210	51	Methine HCC bend
	9	1070	1153	- 83	CH ₃ rock/CC str./CCC and CCI bend
	10	1031	1020	11	CH ₃ rock/methine HCC bend
	11	866	879	-13	CC str./CH ₃ rock
	12	508	499	9	CCC and CCI bend/C-I str.
	13	393	398	- 5	CCC and CCI bend
	14	257	269	-12	C-I str./CCC and CCI bend
	15	240	192	48	CH ₃ torsion
A"	16	2989	2997	- 8	Asym CH ₃ str.
	17	2987	2934	53	Asym CH ₃ str.
	18	2896	2890	6	Asym CH ₃ str.
	19	1469	1468	1	Asym CH ₃ bend
	20	1459	1459	0	Asym CH ₃ bend
	21	1438	1389	49	Sym CH ₃ bend
	22	1316	1321	- 5	Methine HCC bend/CC str.
	23	1068	1113	- 45	CC str./methine HCC bend
	24	967	937	30	CH ₃ rock/CC str.
	25	943	925	18	CH ₃ rock/methine HCC bend
	26	254	269	-15	CCC and CCI bend
	27	237	217	20	CH ₃ torsion

Table 4. Vibrational spectra of isopropyl iodide^{a,b}

^aSee footnote a, Table 1.

^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 32 cm^{-1} and the average deviation is 10 cm⁻¹.

^c Ref. 9.

almost no complete experimental structural data reported, except for methyl iodide, ethyl iodide and 3-iodopropene, the available vibrational frequencies are important criteria in our parameterization. The parameterization was started with the MM3 hydrocarbon parameters, and the iodide parameters of the MM2 force field were added as an initial approximation. Needed parameters absent from the MM2 force field were first estimated with the parameter-estimation routine¹⁴ in MM3. The various parameters were then adjusted to fit the available data insofar as possible. Tables 2–8 compare the calculated frequencies with the experimental assignments.

The root-mean-square (RMS) error between the calculated and experimental frequencies of methyl iodide (Table 2) is 22 cm^{-1} . When the electronegativity effect was not taken into account, the RMS error was 45 cm^{-1} . This difference is mainly due to the fact that the C-H stretching frequencies were systematically underestimated when the electronegativity and Bohlmann effects¹⁵ were not considered. The modes that involve the C-I moiety are all very well repro-

duced. With the present parameters, the average error is -5 cm^{-1} , which indicates little systematic error.

For ethyl iodide, the RMS error between the calculated and experimental frequencies is 25 cm^{-1} , compared with the value of 35 cm^{-1} obtained without taking into account the electronegativity and Bohlmann effects.¹⁵ The average error is now -3 cm^{-1} .

The RMS errors between the calculated and available experimental frequencies of isopropyl iodide, gauche-1propyl iodide, trans-1-propyl iodide and tert-butyl iodide are slightly larger than those of methyl and ethyl iodides. However, they are comparable to the results of most other classes of saturated molecules studied with MM3 (ca 35 cm⁻¹). Additionally, the experimental assignments for the larger molecules tend to be less reliable. Thus the spectra of methyl and ethyl iodides were given higher weight in our assignment of the force field parameters.

The complete assignment of the normal modes of *gauche-3-iodopropene* was published recently.¹³ The RMS error between the frequencies calculated by the MM3 force field and the experimental assignments is

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
A	1	2997	3000	- 3	Asym CH str. (C-CH ₂ -I)
	2	2978	2967	11	Sym CH str. (C-CH ₂ I)
	3	2968	2967	1	Asym C-H str. (CH ₃)
	4	2941	2967	- 26	Asym C-H str. (CH ₃)
	5	2937	2938	-1	Asym CH str. (C-CH ₂ -C)
	6	2893	2876	17	Sym CH str. (CH ₃)
	7	2877	2846	31	Sym CH str. (C-CH ₂ -C)
	8	1480	1458	22	Asym CH ₃ bend/CH ₂ bend
	9	1468	1458	10	Asym CH ₃ bend
	10	1462	1435	27	Asym CH ₃ bend/CH ₂ bend
	11	1447	1427	20	CH_2 bend (C- CH_2 -I)
	12	1403	1382	21	CH ₃ sym bend/CC str.
	13	1375	1340	35	CH ₂ wag. (C-CH ₂ -C)/CC str
	14	1282	1276	6	CH_2 twist (C- CH_2 - C)
	15	1229	1194	35	CH ₂ twist (CCH ₂ I)
	16	1170	1148	22	CH_2 wag (C- CH_2 -I)
	17	1051	1076	- 25	CC str./C–I str.
	18	1022	1020	2	CH ₃ rock/CH ₂ wag./CH ₂ twis
	19	993	1012	-19	CH_2 twist/ CH_2 wag.
	20	875	880	- 5	CC str./CH ₃ rock
	21	837	816	21	CH ₂ rock/CH ₃ rock
	22	736	764	- 28	CH ₂ rock/CH ₃ rock
	23	513	505	8	C-I str./CCC and CCI bend
	24	385	355	30	CCC bend/C-I str.
	25	252	201	51	CCI bend/C-I str./CCC bend
	26	188	_		Torsion
	27	111			Torsion

Table 5. Vibrational spectra of gauche-1-propyl iodide^{a,b}

^aSee footnote a, Table 1.

^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 23 cm⁻¹ and the average deviation is 11 cm⁻¹.

° Ref. 11.

 32 cm^{-1} . To calculate the vibrational frequencies of this molecule, the MM3 parameters derived from fitting the available data for the alkyl iodides were not altered. Additions were parameters for the bond angle 2–1–14 and for the torsion angles 14-1-2-2 and 14-1-2-5 (the numbers are the atom types used in MM3; see footnote b, Table 1). The latter were determined by fitting the *ab initio* torsional curves (see later). Also, an electronegativity parameter for the effect of a type 2 carbon (sp²) on a C—I bond was needed to fit the observed moments of inertia for this molecule. We believe the present parameters are satisfactory.

For isopropyl iodide, it should be noted that the differences between the MM3 and experimental values of the two methyl torsional frequencies are 48 cm^{-1} (A' mode) and 20 cm⁻¹ (A" mode). These deviations are somewhat high because we need to compromise to fit the barrier of internal rotation of ethyl iodide. The latter is calculated too low by about 0.4 kcal mol⁻¹ (MM3 3.10 kcal mol⁻¹, experiment $3.22-3.66 \text{ kcal mol}^{-1}$). The *ab initio* result is $3.6 \text{ kcal mol}^{-1}$ (see Table 10).

In order to have a better fit to the C-H frequencies,

we introduced not only an electronegativity effect but also a Bohlmann effect to the calculations, as was earlier found desirable when lone pairs were present.¹⁵ The electronegativity effect changes the bond lengths of both the α - and β -C—H bonds (the latter 40% as much as the former). The Bohlmann effect changes only the bond length of the α -H. These bond length changes lead in turn to frequency changes.¹⁵ The electronegativity effect and Bohlmann effect parameters were fixed at -0.005 and 0.001, respectively. These values minimize the differences between the experimental and MM3 C-H stretching frequencies. The negative value of the former indicates that the iodine is moderately electronegative, and the small value of the latter indicates very little delocalization of the lone pairs on iodine into the C-H antibonding orbitals, as expected because of the poor overlap.

Structures and moments of inertia

Complete experimental molecular structural parameters were reported for methyl iodide, ¹⁶ ethyl iodide¹⁷ and *gauche*-3-iodopropene.^{18,19} Microwave studies of

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
A'	1	2968	2967	1	C-H sym str. $(C-CH_2-I)$
	2	2939	2967	- 28	$C-H$ asym str. (CH_3)
	3	2893	2876	17	C-H sym str. (CH ₃)
	4	2874	2846	28	$C-H$ sym str. ($C-CH_2-C$)
	5	1477	1458	19	CH ₃ asym bend/CH ₂ bend
	6	1454	1435	19	CH ₂ bend(CCC)/CH ₃ bend
	7	1438	1435	3	CH ₂ bend (CCI)
	8	1389	1380	9	CH ₃ sym bend/CC str.
	9	1362	1325	37	CH ₂ wag. (CCC)/CC str.
	10	1239	1185	54	CH ₂ wag. (CCI)
	11	1052	1090	- 38	CC str./CH ₃ and CH ₂ rock
	12	989	1020	- 31	CC str./CH ₂ wag/CH ₃ rock
	13	891	896	- 5	CC str./CH ₃ rock
	14	602	594	8	C-I str./CCC and CCI bend
	15	278	287	- 9	CCC bend/CH ₂ bend (CCC)
	16	196	201	5	CCI bend/C-I str.
Α"	17	3000	3000	0	$C-H$ asym str. ($C-CH_2-I$)
	18	2970	2967	3	C-H asym str. (CH ₃)
	19	2943	2938	5	$C-H$ asym str. ($C-CH_2-C$)
	20	1456	1458	- 2	CH ₃ asym bend
	21	1234	1278	- 44	CH ₂ twist
	22	1161	1185	- 24	CH_2 twist/ CH_2 and CH_3 rock
	23	1023	1012	10	CH ₂ twist/CH ₂ rock
	24	851	819	32	CH ₃ rock/CH ₂ rock
	25	734	728	6	CH ₂ rock
	26	229		_	Torsion
	27	109	_	_	Torsion

Table 6. Vibrational spectra of trans-1-propyl iodide^{a,b}

^a See footnote a. Table 1.

^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 24 cm^{-1} and the average deviation is 3 cm^{-1} .

^c Ref. 11.

several other molecules including isopropyl iodide,²⁰ gauche-1-propyl iodide,^{21,22} trans-1-propyl iodide^{21,22} and tert-butyl iodide²³ were also reported, but because of the large number of independent geometrical parameters in these molecules, complete structural determinations were not carried out. Some of the structural parameters of the C-I moiety were derived from the microwave spectra by assuming values for various geometrical parameters. So derived structural parameters are, of course, less reliable. The structural parameters calculated by the MM3 force field are compared with the available 'experimental' results and ab initio results in Table 9, including the moments of inertia. Ab initio calculations were performed using the TX90 program.²⁴ The energy minima with respect to nuclear coordinates were calculated by the simultaneous relaxation of all the geometric parameters using the gradient technique²⁵ with the geometry DIIS algorithm.²⁶ The basis set used was the 3-21G basis set for carbon and hydrogen atoms, and a Gaussian basis set consisting of 15 s-type, 11 p-type and 6 d-type functions for the iodine atom. This basis set was designed specifically for fourth-row main group elements.²⁷ It should be pointed

out that owing to the large number of electrons in iodine, *ab initio* calculation at this level should not be considered as reliable as for hydrocarbon compounds. However, comparing the available experimental and *ab initio* structural parameters, it seems that structural features are reproduced adequately at this level of theory.

As is shown in Table 9, the structures of methyl iodide and ethyl iodide are well reproduced by the MM3 force field. The moments of inertia are also in good agreement with the experimental data. The largest deviation between the calculated and experimental moments of inertia was found for *gauche*-1-propyl iodide. The reason for these larger deviations is that we do not include the torsion-bend interaction in MM3, and it is expected to have some effect here. We believe that this set of CCCI (type 1-1-1-14) torsional parameters is reasonable, because it also fits the experimental axial–equatorial free energy difference for cyclohexyl iodide (see Table 11).

Conformational energies

Molecular conformational energies calculated by MM2

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
E	1	2991	2970	21	CH ₃ asym str.
	2	2989	2970	19	CH ₃ asym str.
	3	2897	2890	7	CH ₃ sym str.
	4	1480	1456	24	CH ₃ asym def.
	5	1461	1456	5	CH ₃ asym def.
	6	1431	1370	61	CH ₃ sym def.
	7	1192	1230	- 38	C-C str.
	8	977	1029	- 52	CH ₃ wag.
	9	921	928	- 7	CH ₃ wag.
	10	378	386	- 8	Skeletal def.
	11	272	259	13	CH ₃ torsion
	12	244	227	17	Skeletal def.
A_1	13	2990	2970	20	CH ₃ asym str.
	14	2897	2890	7	CH ₃ sym str.
	15	1473	1456	17	CH ₃ asym def.
	16	1420	1370	50	CH ₃ sym def.
	17	1130	1139	- 9	C-C str.
	18	806	804	2	CH ₃ wag.
	19	514	490	24	C-I str.
	20	245	259	-14	Skeletal def.
A_2	21	2988	_		C-H str.
	22	1470			CH ₃ sym def.
	23	969	-		CH ₃ wag.
	24	245	—	_	CH ₃ torsion

Table 7. Vibrational spectra of tert-butyl iodide^{a,b}

^a See footnote a, Table 1. ^b The root-mean-square deviation (RMS) between the calculated and observed frequencies is 28 cm^{-1} and the average deviation is 7 cm^{-1} . ^c Ref. 12.

Symmetry	Mode	MM3	Experimental ^c	Difference	Assignment
	1	3017	3100	7	$=CH_2$ asym str.
	2	3041	3033	8	$-CH_2$ asym str.
	3	3010	3020	-10	=CH str.
	4	3004	2990	14	$=CH_2$ sym str.
	5	2944	2976	- 32	CH ₂ sym str.
	6	1675	1643	32	C = C str.
	7	1480	1450	30	CH_2 def.
	8	1375	1404	- 29	$=CH_2$ def.
	9	1260	1298	- 38	=CH bend
	10	1223	1197	26	CH ₂ twist
	11	1147	1157	-10	CH_2 wag.
	12	1100	1059	41	$=CH_2$ wag.
	13	1071	993	78	CH bend
	14	973	938	35	$=CH_2 \operatorname{rock}$
	15	952	925	27	C-C str.
	16	755	821	- 66	CH ₂ rock
	17	665	672	- 7	$=CH_2$ twist
	18	512	502	10	C-I str.
	19	382	384	-2	CCC bend
	20	235	232	3	CCI bend
	21	106	95	11	Asym torsion

Table 8. Vibrational spectra of 3-iodopropene^{a,b}

^a See footnote a, Table 1. ^b The mean deviation (RMS) between the calculated and observed frequencies is 32 cm^{-1} and the average deviation is 6 cm^{-1} . ^c Ref. 13.

Methyl iodide	Experimental (MW) ^b	MM3	Ab initio
	2 - 1359	2 1446	2.1050
	2-1338	2.1440	2.1930
	107.47	100.52	107.50
Dinolo moment	10/*4/	1.74	107.30
Momente of inertic	1.00	1.74	
Moments of mertia	2 25950	2 2047 (1 10%)	2 1010
I _a	3.22829	3.2947(1.10%)	3.1810
<i>I</i> _b , <i>I</i> _c	0/*3/43	08.1337 (1.11%)	/0.5169
Ethyl iodide	Experimental (MW) ^d	MM3	Ab initio
C—I	2.151	2.1517	2.2068
C-C	1 • 521	1.5239	1 · 5296
C-C-I	111.62	112.02	112.13
CH ₂			
C—H	1.086	1.1118	1.0768
HCI	104.83	105.00	105.16
H—C—C	109.85	112.69	112.09
CH ₃			
CHs	1.093	1.1131	1.0861
CHa	1.093	1.1131	1.0817
CCH,	108.6	111.05	108.96
CCHa	110.8	111.85	111-11
H ₄ CH ₂	109.32	107.12	108.48
H _a CH _a	107.93	107.65	108.62
Dipole moment	1.98	1.74	
Moments of inertia ^c			
I.	17.3571	17.5075 (0.86%)	17.2839
	169-6140	170-3126 (0-41%)	176.7520
I _c	180.7205	181.3025 (0.32%)	187.7954
Isopropyl iodide	Experimental (MW) ^{e,f}	MM3	Ab initio
C_I	2.144-2.223	2.1704	2.2190
C-C	1.538-1.498	1.5288	1,5300
C-C-C	111.5_116.1	112.27	112.18
	111 9-110 1	100.92	112-10
Dipole moment	1.97	1.70	
Moments of inertia ^c	1.31	1.70	
I I I I I I I I I I I I I I I I I I I	63.0002	62.5886 (0.020%)	67.9677
I a	221.0722	(0.37560 (0.37%))	02.0072
76 7	231-0732	232.9343(0.37%)	240.8340
	278.0403	280.0336 (0.71%)	287.0030
gauche-1-Propyl iodide	Experimental (MW) ^{f,g}	MM3	Ab initio
C—I	2.196	2.1531	2.2100
CCI	114.08	114.06	113.49
CCCI	63 • 73	65.6	68·74
Dipole moment	1.64	1.74	
Moments of inertia ^c			
Ia	47.6975	47·7899 (0·19%)	47.4125
I _b	283.6531	287.5245 (1.35%)	297.464
Ic	313.0814	316-9256 (1-21%)	326.1450

Table 9. Molecular structures and moments of inertia of alkyl iodides^a

(Continued)

trans-1-Propyl iodide	Experimental (MW)	f.g MM3	MM3	
С—I	2.206	2.1524		2.2059
CCI	110-5	112.21		112.47
CCCI	180	180.0		180.0
Dipole moment	1.70	1.74		
Moments of inertia ^c				
I.	20.4517	20.6377 (0	.90%)	20.2709
Ia I.	387.2015	390.2051 (0	.77%)	400.1940
I b	208.1324	401.0084 (0	. 740%)	411.1260
<i>I</i> _c	596.1554	401.0304 (0	(* 74*70)	411*1200
3-Iodopropene	Experimental (MW) ^h	Experimental (ED) ⁱ	MN	Ab initic
C(1)-C(2)	1.348	1 · 348	1.3389	1.3167
C(1)C(3)	1 • 493	1 • 478	1 · 5010	1 • 4920
C(1)—H(4)	1.080	1.081	1.1040	1.0740
C(2)-H(5)	1.080	1.081	1.1022	1.0725
C(2)—H(6)	1.080	1.081	1.1018	1.0740
C(3) - H(7)	1.095	1.081	1.1071	1.0771
C(3) = I(8)	2.189	2.186	2.1661	2.2211
C(3) - H(9)	1.095	1.081	1.1071	1.0765
C(2) - C(1) - C(3)	121.6	123.0	123.98	123.62
C(2) = C(1) = H(4)	120.0	120.0	119.11	120.49
C(1) - C(2) - H(5)	120.0	120.0	120.75	121.46
C(1) = C(2) = H(5)	120.0	120.0	121.21	122.05
H(5) - C(2) - H(6)	120.0	120.0	118.04	116.49
C(1) = C(2) = H(0)	107.0	110.6	112.44	110 47
C(1) = C(3) = I(7)	107.6	111.7	112 44	112 47
C(1) = C(3) = I(6)	107-0	110.6	112.42	117.66
C(1) - C(3) - H(9)	107-0	107.2	105 21	112.00
H(7) = C(3) = I(8)	112.0	10/*2	103.21	105.01
H(7) - C(3) - H(9)	112.0	109.5	108.76	110.27
I(8) - C(3) - H(9)	112.0	107.2	104.61	105.40
C(2) - C(1) - C(3) - I(8)	119.4	111.0	112.6	113.04
Dipole moment	1.60		1.74	
Moments of inertia				
I_{a}	28.6576		28.9920	$(1 \cdot 15\%)$ 28 · 528
Ib	318-4480		322.2456	$(1 \cdot 18\%)$ 328 · 3820
<u>Ic</u>	328.8074		332.3295	(1.18%) 338.6180
tert-Butyl iodide	Experimental (MW)	f,i MM3	;	Ab initio
C—I	2.190(5)	2.1918 (0)•0018)	2.2297
Dipole moment	1.89	1.74		
Moments of inertia				
I ^{a^c}		112.6432		111.1859
In Ic	323 • 8351	326.9680 (0)•97%)	334.7089

Table 9 Continued

^a See footnote a, Table 1. ^b Ref. 16.

^c Numbers in parentheses are differences between the MM3 and experimental results, expressed as a percentage. Since the MM3 values have r_g bond lengths and the experimental values are r_{α} , the former moments of inertia should be larger than the latter by about 0.5-1.0%. ^d Ref. 17. ^e Ref. 20.

^fStructural parameters not listed in the table were fixed in the experimental work.

⁸ Ref. 21. ^h Ref. 18.

ⁱRef. 19. ^jRef. 23.

and MM3 are closely related to the torsional parameters. For monoiodoalkanes, there are only two kinds of torsional angles associated with the iodine (atom type 14): 1-1-1-14 and 5-1-1-14. In order to carry out calculations on *gauche*-3-iodopropene, torsional parameters for the 14-1-2-2 and 14-1-2-5were also required. All of these torsional parameters were determined by fitting the MM3 calculations to *ab initio* torsional energy curves. The latter were calculated by fixing the torsional angles at 15° increments, while optimizing geometries with respect to the rest of the degrees of freedom. These calculations were carried out at the SCF level using the same basis set as for geometry optimizations. Although the basis set and *ab initio* level

Figure 1. Relative energies as a function of torsional angle (C-C-C-I) of 1-propyl iodide

Figure 2. Relative energies as a function of torsional angle (C-C-C-I) of 3-iodopropene

are perhaps not really adequate for a good description of alkyl iodides, owing to error cancellations, the calculated torsional energy curve should be reasonably reliable. Comparisons between the *ab initio* torsional energy curves and those obtained from the MM3 calculations are given in Figures 1 and 2. As can be seen, the MM3 force field satisfactorily reproduces the *ab initio* conformational energy relationships for these molecules, indicating that the MM3 torsional parameters are adequate.

There have been some experimental studies on the barrier to internal rotation in ethyl iodide. The result from our MM3 calculations is $3 \cdot 10 \text{ kcal mol}^{-1}$, which is in good agreement with the *ab initio* value and the experimental results derived from Raman studies (Table 10).

We also calculated the energy difference between the axial and equatorial conformers of cyclohexyl iodide (Table 11). The experimental axial-equatorial free energy differences range from 0.43 to 0.47 kcal mol⁻¹ (in solution). Our calculated result is 0.48 kcal mol⁻¹, in agreement with the experimental results.

Heats of formation

The heats of formation of alkyl iodides were calculated using the usual bond energy scheme.³² The parameters to be fitted were the 1–14 bond energy and structural parameters for methyl iodide and secondary and tertiary iodides. The structural parameter for primary iodide is redundant and therefore was set equal to zero. Hence there are four parameters to be fitted. The gasphase heats of formation for six alkyl monoiodides were available. The input and output data of the leastsquares fitting of the heat parameters are given in Table 12. As there are few experimental data available, they are fitted very well, but the small RMS value is fortuitous.

Table 10. Barriers to internal rotation in ethyl iodide

	Experimental ^a	MM3	Ab initio
Energy (kcal mol^{-1})	3.22-3.66	3.10	3.60

^a Ref. 28.

Table 12. Heats of formation for alkyl iodides^{a,b}

	H_{t}			
Compound	Calc.	Exptl	(Calc. – Exptl)	
Methyl iodide	3.29	3.29	0.00	
Ethyl iodide	-2.06	-2.00	-0.06	
Isopropyl iodide	-9.45	-10.00	0.55	
<i>n</i> -Propyl iodide	-7.24	-7.30	0.06	
tert-Butyl iodide	-17.60	-17.60	0.00	
Cyclohexyl iodide	-12.76	$-12 \cdot 20$	- 0 • 56	
$C - I (1 - 14) = 13 \cdot 290$) ME	$\Gamma_{.} = 1 \cdot 180$	1	
$SEC. = -2 \cdot 825$	5 TER	$R_{\cdot} = -7 \cdot 010$	1	

^a The standard deviation is 0.32 based on six equations.

^b The parameters used in fitting the heats of formation are as follows (see Ref. 32 for details). The sum of heats is $-13 \cdot 77 \text{ kcal mol}^{-1}$ for methyl iodide, $-19 \cdot 46 \text{ kcal mol}^{-1}$ for ethyl iodide, $-25 \cdot 15 \text{ kcal mol}^{-1}$ for isopropyl iodide, $-26 \cdot 19 \text{ kcal mol}^{-1}$ for 1-propyl iodide, $30 \cdot 83 \text{ kcal mol}^{-1}$ for terr-butyl iodide and $-35 \cdot 81 \text{ kcal mol}^{-1}$ for ethyl iodide, $1 \cdot 71 \text{ kcal mol}^{-1}$ for terributyl iodide, $2 \cdot 84 \text{ kcal mol}^{-1}$ for methyl iodide, $2 \cdot 73 \text{ kcal mol}^{-1}$ for 1-propyl iodide, $2 \cdot 73 \text{ kcal mol}^{-1}$ for 1-propyl iodide, $4 \cdot 55 \text{ kcal mol}^{-1}$ for terributyl iodide and $8 \cdot 79 \text{ kcal mol}^{-1}$ for cyclohexyl iodide. The POP and TORS contributions are zero for methyl iodide, ethyl iodide, isopropyl iodide and $1 \cdot 26$ for cyclohexyl iodide.

ACKNOWLEDGEMENTS

The authors are indebted to the National Science Foundation for support of this work (Grant 1021RR168410) and to Kuo-Hsiang Chen and Ruifeng Liu for helpful discussions. The MM3 force field is described in detail in Ref. 33 and subsequent papers. The MM3 program is available to all users from Technical Utilization, 235 Glen Village Court, Powell, OH 43065, USA, to commercial users only from Tripos Associates, 1699 South Hanley Road, St. Louis, MO 63144, USA, and to academic users only from the Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN 47405, USA. The current version is available to run on most types of computers, and interested parties should contact one of the distributors directly.

Table 11. Axial-equatorial free energy differences for cyclohexyl iodide

	Experimental ^a	Experimental ^b	Experimental ^c	Calculated
Energy (kcal mol^{-1})	0.43	0.47	0.46	0.48

^a Best values, 1967; see Ref. 29.

^b PMR in CS2 experiment; see Ref. 30.

^c Carbon-13 NMR data; see Ref. 31.

REFERENCES

- D. W. Aksnes and J. Stogard, Acta Chem. Scand. 27, 3277 (1973); R. J. Abraham and K. Parry, J. Chem. Soc. B 539 (1970); A. Goursot-Leray and H. Bodot, Tetrahedron 27, 2133 (1971); G. Heublein, R. Fuhmstedt, H. Dawczynski and P. Kadura, Tetrahedron 26, 91 (1970); R. A. Scott and H. A. Scheraga, J. Chem. Phys. 42, 2209 (1965); M. M. Kreevoy and E. A. Mason, J. Am. Chem. Soc. 79, 4851 (1957).
- A. Y. Meyer, N. L. Allinger and Y. Yuh, Isr. J. Chem. 20, 57 (1980).
- 3. A. Y. Meyer and N. L. Allinger, Tetrahedron 31, 1971 (1975).
- N. L. Allinger, J.-H. Lii and Y. H. Yuh, J. Am. Chem. Soc. 111, 8551, 8566, 8576 (1989).
- N. L. Allinger, Z.-Q. S. Zhu and K. Chen, J. Am. Chem. Soc. 114, 6120 (1992), and references cited therein.
- Reference from L. M. Sverdlov, M. A. Kovner and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, p. 382 (1974).
- 7. G. A. Crowder, J. Mol. Spectrosc. 48, 467 (1973).
- 8. G. Crowder and Z. Najafi, Can. J. Chem. 55, 310 (1977).
- 9. P. Klaboe, Spectrochim. Acta, Part A 26, 87 (1970).
- 10. G. A. Crowder and S. Ali, J. Mol. Struct. 25, 377 (1975).
- A. J. Barnes, H. E. Hallam, J. D. R. Howells and G. F. Scrimshaw, J. Chem. Soc., Faraday Trans. 2 69, 738 (1973).
- 12. H. Sheppard, Trans. Faraday Soc. 46, 527 (1950).
- 13. J. R. Durig, Q. Tang and T. S. Little, J. Raman Spectrosc. 23, 653 (1992).
- N. L. Allinger, X. Zhou and J. Bergsma, J. Mol. Struct. (Theochem) in press [this routine is included in MM3(94); see Ref. 33].
- H. Thomas, K. Chen and N. L. Allinger, J. Am. Chem. Soc. 116, 5887 (1994).

- 16. P. D. Mallinson, J. Mol. Spectrosc. 55, 94 (1975).
- 17. T. Inagusa, M. Fujitake and M. Hayashi, J. Mol. Spectrosc. 128, 456 (1988).
- Y. Sasada, Y. Niide, M. Takano and T. Satoh, J. Mol. Spectrosc. 66, 421 (1977).
- K. Hagen, Q. Shen and R. Stolevik, J. Phys. Chem. 95, 8632 (1991).
- 20. P. Groner, Y. S. Li and J. R. Durig, J. Mol. Spectrosc. 72, 20 (1978).
- Y. Niide, I. Ohkoshi and M. Takano, J. Mol. Spectrosc. 122, 113 (1987).
- 22. M. Fujitake and M. Hayashi, J. Mol. Spectrosc. 127, 112 (1988).
- W. Winkle and H. Hartmann, Z. Naturforsch., Teil A 25, 840 (1970).
- P. Pulay, TX90, Fayetteville, AR (1990); P. Pulay, Theor. Chim. Acta 50, 299 (1979).
- 25. P. Pulay, Mol. Phys. 17, 197 (1969).
- 26. P. Csaszar and P. Pulay, J. Mol. Struct. 114, 31 (1984).
- 27. A. Stromberg, O. Gropen and U. Wahlgren, J. Comput. Chem. 4, 181 (1983).
- 28. J. B. Durig, W. E. Bucy, L. A. Carreira and C. J. Wurrey, J. Chem. Phys. 60, 1754 (1974).
- J. A. Hirsch, In *Topics in Stereochemistry*, edited by N. L. Allinger and E. L. Eliel, Vol. 1. Interscience, New York (1967), p. 204.
- F. R. Jensen, C. H. Bushweller and B. H. Beck, J. Am. Chem. Soc. 91, 344 (1969).
- 31. H. J. Schneider and V. Hoppen, Tetrahedron Lett. 579 (1974).
- U. Burkert and N. L. Allinger, *Molecular Mechanics*. American Chemical Society, Washington, DC (1982), p. 169.
- N. L. Allinger, Y. H. Yuh and J.-H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).